Ratio

a comparison of any two quantities

▲ to ○	4 to 3
▲ to all of set A	4/7
O to	3:5
set B to set A	9 to 7, 9/7 , or 9:7

Absolute Value

$$|5| = 5$$
 $|-5| = 5$

distance a number is from zero

Fraction Multiplication

How much is 3/8 of 2/3?

$$3/8 \times 2/3 = 6/24 = 1/4$$

Fraction Division

How many halves are in three-fourths?

one "whole" half

There are 1/12 halves in three-fourths.

Fraction Division

How many halves are in three-fourths?

There are 112 halves in three-fourt

$$3/4 \div 1/2 = 1/12$$

Equivalent Relationships

Fraction:

Decimal: 0.4

Percent: 40%

Integer Operations

Addition

$$-5 + 6 = 1$$

Subtraction

$$1 - 6 = -5$$

Integer Operations

Addition

$$-5 + 6 = 1$$

Subtraction

$$1 - 6 = -5$$

$$\oplus$$

$$0 \oplus$$

$$0 \oplus$$

$$0 \oplus$$

$$0 \oplus$$

$$0 \oplus$$

Integer Operations

Multiplication

$$3 \cdot (-4) = -12$$

How many tiles are in 3 groups of -4 tiles?

Division

$$-12 \div -4 = 3$$

How many groups of -4 tiles are in -12 tiles?

Exponential Form

Square Root

radical symbol

$$36 = 6.6 = 62 = 6$$

Squaring a number and taking a square root are inverse operations.

$$-36 = -6$$

 $(-6)^2 = -6 \cdot -6 = 36$

Square Root

between 9 and 16

Perfect Squares

$$0^{2} = 0 \cdot 0 = 0$$
 $1^{2} = 1 \cdot 1 = 1$
 $2^{2} = 2 \cdot 2 = 4$
 $3^{2} = 3 \cdot 3 = 9$
 $4^{2} = 4 \cdot 4 = 16$
 $5^{2} = 5 \cdot 5 = 25$

$$\sqrt{16} = \sqrt{4 \cdot 4} = 4$$
perfect square

Powers of Ten

	Meaning	Value	
10 ⁴	10.10.10.10	10,000	
10 ³	10.10.10	1000	
10 ²	10.10	100	
10 ¹	10	10	
10 ⁰	1	1	
10 ⁻¹	110	0.1	
10 ⁻²	110.110	1100 = 0.01	
10 ⁻³	110.110.110	11000 = 0.001	
10 ⁻⁴	110.110.110.	110,000 = 0.0001	

Scientific Notation

 $a \times 10^{n}$

a = number greater than orequal to 1 and less than 10n = integer

 $17,500,000 = 1.75 \times 10^{7}$

 $0.0000026 = 2.6 \times 10^{-6}$

Arithmetic Sequences

What is the next term?

Geometric Sequences

What is the next term?

Natural Numbers

The set of numbers 1, 2, 3, 4...

Whole Numbers

The set of numbers 0, 1, 2, 3, 4...

Integers

The set of numbers ...-3, -2, -1, 0, 1, 2, 3...

Comparing Integers

$$-5 < 1 \text{ or } 1 > -5$$

$$-4 > -5$$
 or $-5 < -4$

Rational Numbers

A number that can be written as the quotient of two integers

235 -5 0.3 16 137

Irrational Numbers

A number that cannot be expressed as the quotient of two integers

Real Numbers

The set of all rational and irrational numbers

Order of Operations

 $\begin{array}{c} \text{Grouping Symbols} \\ \begin{bmatrix} () \\ \{ \} \\ [] \\ [abs] \\ \text{Fraction bar} \\ \end{array}$

Exponents

Multiplication Division

Addition Subtraction

Proportion

$$\frac{a}{b} = \frac{c}{d}$$

$$a:b = c:d$$

a is to b as c is to d

Scale Factor

Figures A and B are similar.

What is the scale factor from A to B? Scale factor = 2

What is the scale factor from B to A? Scale factor = 1/2

Percent

Per hundred

$$56\% = 56/100 = 14/25 = 0.56$$

Unit Rate

\$4 per gallon = \$41 gallon

70 miles per hour = 70 miles1 hour

Percent of Increase

Percent of change = <u>new – original</u> original

Was \$3.25 per gallon

Now \$3.85 per gallon

What is the percent of increase?

 $\frac{3.85 - 3.25}{3.25}$

increase of 18%

Percent of Decrease

Percent of change = <u>new – original</u> original

Was \$1200 Now only \$900 What is the percent of decrease?

900 – 1200 1200

decrease of 25%

Ballpark Comparisons Length

1 inch or2.5 centimeter

1 yard < 1 meter

Ballpark Comparisons Weight/Mass

Ballpark Comparisons Volume

Temperature

	Fahrenheit	Celsius
Water freezes	32°F	0°C
Water boils	212°F	100°C
Body Temperature	98°F	37°C
Room Temperature	70°F	20°C

Pi

 $\pi \approx 3.14159...$

 $\pi =$

circumferencediamet

er

Circumference

 $C = 2\pi r$ C = perimeter of a circle

Area of a Circle

$$A = \pi r^2$$

Volume of a Prism

Volume = length x width x height

V = Iwh

Surface Area

Surface Area (S.A.) = sum of areas of faces

Vertex

Face and Base

Pyramid

V = Bh

B = area of base p = perimeter of base

S.A. = Ip + B

Prism

V = Bh

S.A. = hp + 2B

B = area of base p = perimeter of base

Cone

$$V = \pi r^2 h$$

$$S.A. = \pi r^2 + \pi r I$$

Cylinder

$$V = \pi r^2 h$$

$$S.A. = 2\pi r^2 + 2\pi rh$$

Volume Changing one attribute

What happens to the volume?

Probability

$$P(A) = 3/7$$

impossible certain

Probability of Independent Events

$$P(green) = 3/8$$

 $P(yellow) = 2/8 = 1/4$

P(green and yellow) =

P(green) • P(yellow) =
$$3/8 \cdot 1/4$$

= $3/32$

Probability of Dependent Events

What is the probability of getting a red jelly bean on first pick and then without replacing it, getting a green jelly bean on the second pick?

P(red) • P(green after red) =

$$\frac{4}{12} \cdot \frac{2}{11} = \frac{8}{132} = \frac{2}{33}$$

Fundamental Counting Principle

If there are m ways for one event to occur and n ways for a second event to occur, then there are $m \cdot n$ ways for both events to occur.

Tree Diagram

Joe has two pairs of pants (blue and tan). He also has three shirts (red, green and white). List the possible outfits that Joe can make.

PANTS SHIRTS POSSIBLE OUTCOMES

2 • 3 or 6 possible outcomes

MEAN

a measure of central tendency

Balance Point

Numerical Average

$$\frac{2+3+4+7}{4} = \frac{16}{4} = 4$$

Median

a measure of central tendency

MODE a measure of central tendency

Data Sets	Mode
2, 3, 3, 3, 5, 5, 9, 10	3
5.2, 5.4, 5.5, 5.6, 5.8, 5.9, 6.0	none
1, 1, 2, 5, 6, 7, 7, 9, 11, 12	1, 7

Range

Data set
212, 3, 334, 378, 5, 512, 916, 1045, 1512,
20

20 - 212 = 1712

Range = 1712

Bar Graph

Pounds of Newspapers Recycled by Lexington Middle School Students

Line Graph

Value of Sarah's Car

Stem-and-Leaf Plot

Math Test Scores 56, 65, 98, 82, 64, 71, 78, 86, 95, 91, 59, 70, 80, 92, 76, 82, 85, 91, 92, 73

STEM	LEAF
5	69
6	4 5
7	01368
8	02256
9	112258

Key: 5|6 means 56

Circle Graph

Favorite Ice Cream

Histogram

Scatterplot

Illustrates the relationship between two sets of data.

Positive Correlation

y-coordinates increase as x-coordinates increase

Negative Correlation

y-coordinates decrease as x-coordinates increase

Constant Correlation

y-coordinates remain about the same as x-coordinates increase

No Correlation

no pattern exists between the x- and y-coordinates

Perimeter

the measure of the distance around a figure

Area

the number of square units needed to cover a surface or figure

Area = 12 Square Units

Congruent Figures

have exactly the same shape and size

Complementary Angles

$$m\angle 1 + m\angle 2 = 90^{\circ}$$
 in each figure

Supplementary Angles

 $m \angle 1 + m \angle 2 = 180^{\circ}$ in each figure

Vertical Angles

∠1 and ∠3 are vertical angles. ∠2 and ∠4 are vertical angles.

 $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$

Adjacent Angles

∠1 is adjacent to ∠2 in each figure

Share a common side and a common vertex

Triangles

Quadrilaterals

Quadrilaterals Relationships

Parallelogram

- opposite angles are congruent
- 2 pairs of parallel sides
- 2 pairs of opposite sides congruent

Rhombus

- opposite angles are congruent
- 2 pairs of parallel sides

4 congruent sides

Rectangle

- 4 right angles
- 2 pairs of parallel sides
- 2 pairs of opposite sides congruent

Square

- 4 right angles
- 2 pairs of parallel sides
- 4 congruent sides

Trapezoid

- may have zero or two right angles
- exactly one pair of parallel sides
- may have one pair of congruent sides

Kite

- one pair of opposite congruent angles
- 2 pairs of adjacent congruent sides

Composite Figures

Subdivide into other figures then determine the perimeter.

Subdivide into other figures then determine the area.

Similar Figures

ABCD ~ HGFE		
Angles	Sides	
∠A corresponds to ∠H	AB corresponds to HG	
∠B corresponds to ∠G	BC corresponds to GF	
∠C corresponds to ∠F	CD corresponds to FE	
∠D corresponds to ∠E	DA corresponds to EH	

Corresponding angles are congruent. Corresponding sides are proportional.

Similar Figures and Proportions

ABCD ~ HGFE

DCEF = ADHE

42 = 12x

Right Triangle

Pythagorean Theorem

$$a^2 + b^2 = c^2$$

Three Dimensional Models

Coordinate Plane

ordered pair (x,y)

Rotation

Reflection

Preimage	Image
D(1,-2)	D'(-1,-2)
E(3,-2)	E'(-3,-2)
F(3,2)	F'(-3,2)

Translation

Preimage	Image
A(1,2)	A'(-2,-3)
B(3,2)	B'(0,-3)
C(4,3)	C'(1,-2)
D(3,4)	D'(0,-1)

E(1,4) E'(-2,-1)

Dilation

Additive Identity Property

$$0.3 + 0 = 0.3$$

$$0 + (-7) = -7$$

$$47 = 0 + 47$$

$$W + 0 = W$$

Additive Inverse Property

$$1.4 + (-1.4) = 0$$

$$(-9) + 9 = 0$$

$$0 = 47 + (-47)$$

$$x + (-x) = 0$$

Associative Property

Addition:

$$(4 + 2) + 8 = 4 + (2 + 8)$$

 $x + (3x + 12) = (x + 3x) +$
 12

Multiplication:

$$(3 \cdot 1.5) \cdot 6 = 3 \cdot (1.5 \cdot 6)$$

 $2(3x) = (2 \cdot 3)x$

Commutative Property

Addition:

$$2.76 + 3 = 3 + 2.76$$

$$(a + 5) + 7 = (5 + a) + 7$$

Multiplication:

$$-8 \cdot 23 = 23 \cdot (-8)$$

$$y \cdot 9 = 9y$$

Multiplicative Identity Property

$$9 \cdot 1 = 9$$

$$1 \cdot (-10) = -10$$

$$32 = 32 \cdot 1$$

Multiplicative Inverse Property

$$2 \cdot 12 = 1$$

$$1 = (-19)^{-} -9$$

$$x \cdot 1x = 1 \ (x \neq 0)$$

Multiplicative Property of Zero

$$0 = 8 = 0$$

$$0(-13) = 0$$

$$56 x \cdot 0 = 0$$

Distributive Property

$$-4(2+3) = -4(2) + -4(3)$$

$$5 \cdot (y - 7) = (5 \cdot y) - (5 \cdot 7)$$

$$(2 \cdot 13) + (2 \cdot 5) = 2(13 + 5)$$

Equation

A mathematical sentence stating that two expressions are equal.

$$2.76 + 3 = 3 + 2.76$$

 $3x = 6.9$

Expression

X

-26

 $2x + 3^4$

3(y + 3.9) - 89

Variable

$$2(y + 3)$$

$$3 + x = 2.08$$

$$A = \pi r^2$$

Coefficient

$$(-4) + 2x$$

$$-7y^2$$

Term

$$3x + 2y - 8$$

3 terms

$$-5x^2 + (-2x)$$

2 terms

23ab

1 term

Constant

$$4x-12$$

$$(7)$$
 – 2 $y + x – 6 $x^2$$

$$3(x + 3.9) - 89$$

Inequality

$$3r \ge -7.5$$

Like Terms

$$4x - 3y + 6x - 7$$

$$2y^2 - 3y + 7y^2$$

 $-5r^2(-6) + 2r + (2)$

Relations

 $\{(2,3), (4,1), (2,5)\}$

X	У
2	2
-3	4
5	-1
0	4
1	-6

 $\{(0,4), (0,3), (0,2), (0,1)\}$

Functions

 $\{(2,4), (3,2), (0,2), (-1,2)\}$

X	Y
3	2
2	4
0	2
-1	2

Table of Values

X	У
0	1
1	2
2	5
3	10
4	17

а	1	2	3	4
b	22,500	22,000	21,500	21,000

Domain

$$\{(-2,0), (-1,1), (0,2), (1,3)\}$$

Y
0
1
2
3

 $\{-2,-1,0,1\}$

Range

$$\{(-2,0), (-1,1), (0,2), (1,3)\}$$

X	У
-2	/ 0\
-1	1
0	2
1	3

 $\{0, 1, 2, 3\}$

Dependent/ Independent Variable

Determine the distance a car will travel going 55 mph.

$$d = 55h$$

independent

h	d
0	0
1	55
2	110
3	165

dependent

Independent Variable

$$y = 2x + 7$$

x represents the independent variable (input values or domain)

Dependent Variable

$$\bigcirc = 2x + 7$$

y represents the dependent variable (output values or range)

Connecting Representations

The total distance Sam walks depends on how long he walks. If he walks at 2.1 mph, show multiple representations of the relationship.

t	d
0	0
1	2.1
2	4.2
4	8.4

$$d = 2.1t$$

Multistep Equations

$$2x - 5.7 = -3.4x + 11.04$$

$$23(n + 9) = -56n$$

$$25 = 6p - 5-4$$

Multistep Equation

$$3x + 5 = -3 - x$$

Unit Rate as Slope

A student walks 2 miles per hour

2 miles 1 hour

