Ratio

a comparison of any two quantities

SET A

Δ to \bigcirc	4 to 3
Δ to all of set A	$4 / 7$
O to \bigcirc	$3: 5$
set B to set A	9 to $7,9 / 7$, or $9: 7$

Absolute Value

$$
|5|=5 \quad|-5|=5
$$

distance a number is from zero

Fraction Multiplication

How much is $3 / 8$ of $2 / 3 ?$

$3 / 8 \times 2 / 3=6 / 24=1 / 4$

Fraction Division
 $$
3 / 4 \div 1 / 2
$$

How many halves are in three-fourths?
one "whole" half

half

There are 1/12 halves in three-fourths.
$3 / 4 \div 1 / 2=1 / 12$

Fraction Division

$$
3 / 4 \div 1 / 2
$$

How many halves are in three-fourths?

three-fourths

one-half

1 "whole" one-half

There are 112 halves in three-fourt|
$3 / 4 \div 1 / 2=1 / 12$

Equivalent Relationships

Integer Operations

Addition
$-5+6=1$

Subtraction
$1-6=-5$

Integer Operations

Addition
$-5+6=1$

Subtraction
$1-6=-5$

Integer Operations

Multiplication
$3 \cdot(-4)=-12$

How many tiles are in 3 groups of -4 tiles?

Division
$-12 \div-4=3$

How many
groups of -4 tiles are in -12 tiles?

Exponential Form

Square Root

radical symbol
 $$
36=6
$$

Squaring a number and taking a square root are inverse operations.

$$
\begin{gathered}
-36=-6 \\
(-6)^{2}=-6 \cdot-6=36
\end{gathered}
$$

Square Root

between 9 and 16

Perfect Squares

$$
\begin{aligned}
& 0^{2}=0 \cdot 0=0 \\
& 1^{2}=1 \cdot 1=1 \\
& 2^{2}=2 \cdot 2=4 \\
& 3^{2}=3 \cdot 3=9 \\
& 4^{2}=4 \cdot 4=16 \\
& 5^{2}=5 \cdot 5=25 \\
& \sqrt{\mathbf{1 6}}=\sqrt{\mathbf{4} \cdot \mathbf{4}}=\mathbf{4} \\
& \text { perfect square }
\end{aligned}
$$

Powers of Ten

	Meaning	Value
10^{4}	$10 \cdot 10 \cdot 10 \cdot 10$	10,000
10^{3}	$10 \cdot 10 \cdot 10$	1000
10^{2}	$10 \cdot 10$	100
10^{1}	10	10
10^{0}	1	1
10^{-1}	110	0.1
10^{-2}	$110 \cdot 110$	$1100=0.01$
10^{-3}	$110 \cdot 110 \cdot 110$	$11000=0.001$
10^{-4}	$110 \cdot 110 \cdot 110 \cdot$	$110,000=$
	110	0.0001

Scientific Notation

$a \times 10^{n}$
$a=$ number greater than or equal to 1 and less than 10
$n=$ integer

$$
\begin{array}{r}
17,500,000=1.75 \times 10^{7} \\
0.0000026=2.6 \times 10^{-6}
\end{array}
$$

Arithmetic Sequences

What is the next term?

Geometric
 Sequences

What is the next term?

Natural Numbers

The set of numbers 1, 2, 3, 4...

Whole Numbers

The set of numbers

$0,1,2,3,4 \ldots$

Integers

$$
\begin{aligned}
& \text { The set of numbers } \\
& \ldots-3,-2,-1,0,1,2,3 \ldots
\end{aligned}
$$

Comparing Integers

$$
-5<1 \text { or } 1>-5
$$

$$
-4>-5 \text { or }-5<-4
$$

Rational Numbers

A number that can be written as the quotient of two integers $\begin{array}{lllll}235 & -5 & 0.3 & 16 & 137\end{array}$

Irrational Numbers

A number that cannot be expressed as the quotient of two integers

$7-0.23223222322223 \ldots$

Real Numbers

The set of all rational and irrational numbers

Order of

Operations

Fraction bar

Exponents

Proportion

$\frac{a}{b}=\frac{c}{d}$
$a: b=c: d$
a is to b as c is to d

Scale Factor

Figures A and B are similar.

What is the scale factor from A to B ? Scale factor $=2$
What is the scale factor from B to A ?
Scale factor $=1 / 2$

Percent

Per hundred

$$
\begin{aligned}
& 56 \%=56 / 100= \\
& 14 / 25=0.56
\end{aligned}
$$

Unit Rate

\$4 per gallon = \$41 gallon

70 miles per hour $=70$ miles1 hour

Percent of Increase

Percent of change $=$ new - original original

What is the percent of increase?

$$
\frac{3.85-3.25}{3.25}
$$

Percent of Decrease

Percent of change $=$ new - original original

Was \$1200 Now only $\$ 900$

What is the percent of decrease?

$$
\frac{900-1200}{1200}
$$

decrease of 25%

Ballpark Comparisons Length

1 inch or
 2.5 centimeter

1 yard < 1 meter

Ballpark

Comparisons

 Weight/Mass

Ballpark

Comparisons Volume

Ballpark Comparisons

Temperature

Water freezes	Fahrenheit	Celsius
Water boils	$212^{\circ} \mathrm{F}$	$0^{\circ} \mathrm{C}$
Body	$100^{\circ} \mathrm{C}$	
Temperature	$98^{\circ} \mathrm{F}$	$37^{\circ} \mathrm{C}$
Room Temperature	$70^{\circ} \mathrm{F}$	$20^{\circ} \mathrm{C}$

$$
\pi \approx 3.14159 \ldots
$$

$$
\pi=
$$

circumferencediamet

Circumference

$$
C=2 \pi r
$$

$C=$ perimeter of a circle

Area of a Circle

$$
A=\pi r^{2}
$$

Volume of a Prism

$$
\begin{aligned}
& \text { Volume }=\text { length } x \text { width } x \text { height } \\
& \qquad V=I w h
\end{aligned}
$$

Surface Area

Surface Area (S.A.) = sum of areas of faces

Vertex

Face and Base

Pyramid

S.A. $=I p+B$

Prism

$S . A .=h p+2 B$

Cone

$$
\begin{aligned}
V & =\pi r^{2} h \\
S . A . & =\pi r^{2}+\pi r l
\end{aligned}
$$

Cylinder

$$
V=\pi r^{2} h
$$

$$
\text { S.A. }=2 \pi r^{2}+2 \pi r h
$$

Volume

Changing one attribute

What happens to the volume?

Probability of Independent Events

$P($ green $)=3 / 8$
$P($ yellow $)=2 / 8=1 / 4$
$\mathrm{P}($ green and yellow $)=$
$P($ green $) \bullet P($ yellow $)=3 / 8 \cdot 1 / 4$

$$
=3 / 32
$$

Probability of

Dependent Events

What is the probability of getting a red jelly bean on first pick and then without replacing it, getting a green jelly bean on the second pick?

$P($ red $) \cdot P($ green after red $)=$

$$
\frac{4}{12} \cdot \frac{2}{11}=\frac{8}{132}=\frac{2}{33}
$$

Fundamental

 Counting PrincipleIf there are m ways for one event to occur and n ways for a second event to occur, then there are $m \bullet n$ ways for both events to occur.

Tree Diagram

Joe has two pairs of pants (blue and tan). He also has three shirts (red, green and white). List the possible outfits that Joe can make.

PANTS SHIRTS POSSIBLE OUTCOMES
\rightarrow red \rightarrow blue pants with red shirt Blue \longleftrightarrow green \rightarrow blue pants with green shirt white \rightarrow blue pants with white shirt Tan \longrightarrow green \rightarrow tan pants with green shirt white \rightarrow tan pants with white shirt
$2 \cdot 3$ or 6 possible outcomes

$$
\begin{gathered}
\text { MEAN } \\
\text { a measure of central tendency } \\
2,3,4,7 \\
\text { Nalance Point } \\
\frac{\mathbf{2 + 3}+\mathbf{4}+\mathbf{7}}{4}=\frac{\mathbf{1 6}}{\mathbf{4}}=\text { (4) }
\end{gathered}
$$

Median

a measure of central tendency

$$
\begin{array}{r}
6,7,8,9,9 \\
\uparrow=\text { median }
\end{array}
$$

$$
5,6, \underbrace{8,9}_{\uparrow}, 11,12
$$

MODE

a measure of central tendency

Data Sets	Mode
$2,3,3,3,5,5,9,10$	3
$5.2,5.4,5.5,5.6$, $5.8,5.9,6.0$	none
$1,1,2,5,6,7,7,9$, 11,12	1,7

Range

> Data set $212,3,334,378,5,512,916,1045,1512$,

$$
20-212=1712
$$

Range = 1712

Bar Graph

Pounds of Newspapers Recycled by Lexington Middle School Students

Line Graph

Value of Sarah's Car

Stem-and-Leaf Plot

Math Test Scores

$56,65,98,82,64,71,78,86,95,91$, $59,70,80,92,76,82,85,91,92,73$

STEM	LEAF
5	69
6	45
7	01368
8	02256
9	112258

Key: 5|6 means 56

Circle Graph

Favorite Ice Cream

Scatterplot

Illustrates the relationship
between two sets of data.

Positive Correlation
 y-coordinates increase as x-coordinates increase

y

Negative Correlation

y-coordinates decrease as x-coordinates increase

Constant Correlation

y-coordinates remain about the same as x-coordinates increase

No Correlation

no pattern exists between the x - and y-coordinates

Perimeter

the measure of the distance around a figure

$$
P=a+b+c+d
$$

$P=r+s+t+u$

$P=e+f+g$

Area

the number of square units needed to cover a surface or figure

Area $=12$ Square Units

Congruent Figures

have exactly the same shape and size

$\square \mathrm{ABCD} \cong \square \mathrm{HGFE}$

Complementary Angles

Fig 2

$$
\begin{gathered}
\mathrm{m} \angle 1+\mathrm{m} \angle 2=90^{\circ} \\
\text { in each figure }
\end{gathered}
$$

Supplementary Angles

Fig 2

$$
\begin{gathered}
m \angle 1+m \angle 2=180^{\circ} \\
\text { in each figure }
\end{gathered}
$$

Vertical Angles

$\angle 1$ and $\angle 3$ are vertical angles. $\angle 2$ and $\angle 4$ are vertical angles.
$\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$

Adjacent Angles

$\angle 1$ is adjacent to $\angle 2$ in each figure

Share a common side and a common vertex

Triangles

Quadrilaterals

Quadrilaterals

 Relationships

Parallelogram

- opposite angles are congruent
- 2 pairs of parallel sides
- 2 pairs of opposite sides congruent

Rhombus

- opposite angles are congruent
- 2 pairs of parallel sides
- 4 congruent sides

Rectangle

- 4 right angles
.
2 pairs of parallel sides
2 pairs of opposite sides congruent

Square

- 4 right angles
- 2 pairs of parallel sides
- 4 congruent sides

Trapezoid

- may have zero or two right angles
- exactly one pair of parallel sides
- may have one pair of congruent sides

Kite

- one pair of opposite congruent angles 2 pairs of adjacent congruent sides

Composite Figures
 20 cm

Subdivide into other figures then determine the perimeter.

25^{\prime}
Subdivide into other figures then determine the area.

Similar Figures

$A B C D \sim$ HGFE	
$\angle A$ Angles	Sides
$\angle B$ corresponds to $\angle H$	AB corresponds to HG
$\angle C$ corresponds to to $\angle \mathrm{G}$	BC corresponds to GF
$\angle D$ corresponds to $\angle E$	DA corresponds to FE

Corresponding angles are congruent. Corresponding sides are proportional.

Similar Figures and

 Proportions

ABCD ~ HGFE
DCEF = ADHE
$42=12 x$
Right Triangle

Pythagorean Theorem

$a^{2}+b^{2}=c^{2}$

Three Dimensional Models

front

side

top

Coordinate Plane

ordered pair (x,y)

Rotation

Reflection

Preimage	Image
$D(1,-2)$	$D^{\prime}(-1,-2)$
$E(3,-2)$	$E^{\prime}(-3,-2)$
$F(3,2)$	$F^{\prime}(-3,2)$

Translation

Preimage	Image
$\mathrm{A}(1,2)$	$\mathrm{A}^{\prime}(-2,-3)$
$\mathrm{B}(3,2)$	$\mathrm{B}^{\prime}(0,-3)$
$\mathrm{C}(4,3)$	$\mathrm{C}^{\prime}(1,-2)$
$\mathrm{D}(3,4)$	$\mathrm{D}^{\prime}(0,-1)$

$E(1,4) \quad E^{\prime}(-2,-1)$
 Dilation

Additive Identity Property

$$
0.3+0=0.3
$$

$$
0+(-7)=-7
$$

$$
47=0+47
$$

$$
w+0=w
$$

Additive Inverse Property

$$
\begin{gathered}
1.4+(-1.4)=0 \\
(-9)+9=0 \\
0=47+(-47) \\
x+(-x)=0
\end{gathered}
$$

Associative Property

Addition:

$$
\begin{gathered}
(4+2)+8=4+(2+8) \\
x+(3 x+12)=(x+3 x)+ \\
12
\end{gathered}
$$

Multiplication:

$$
\begin{gathered}
(3 \cdot 1.5) \cdot 6=3 \cdot(1.5 \cdot 6) \\
2(3 x)=(2 \cdot 3) x
\end{gathered}
$$

Commutative Property

Addition:
$2.76+3=3+2.76$
$(a+5)+7=(5+a)+7$

Multiplication:

$$
\begin{gathered}
-8 \cdot 23=23 \cdot(-8) \\
y \cdot 9=9 y
\end{gathered}
$$

Multiplicative Identity Property

$$
9 \cdot 1=9
$$

$$
1 \cdot(-10)=-10
$$

$$
32=32 \cdot 1
$$

Multiplicative Inverse Property

$$
2 \cdot 12=1
$$

$$
1=(-19)^{\cdot}-9
$$

$$
x \cdot 1 x=1(x \neq 0)
$$

Multiplicative Property of Zero
 $$
0=8 \cdot 0
$$
 $$
0(-13)=0
$$
 $$
56 x \cdot 0=0
$$

Distributive Property

$$
-4(2+3)=-4(2)+-4(3)
$$

$$
5 \cdot(y-7)=(5 \cdot y)-(5 \cdot 7)
$$

$$
(2 \cdot 13)+(2 \cdot 5)=2(13+5)
$$

Equation

A mathematical sentence stating that two expressions are equal.

$$
\begin{gathered}
2.76+3 \ominus 3+2.76 \\
3 x \fallingdotseq 6.9
\end{gathered}
$$

Expression

X

$$
-26
$$

$$
2 x+3^{4}
$$

$$
3(y+3.9)-89
$$

Variable

$2(y+3)$

$$
3+x=2.08
$$

$$
A=\pi r^{2}
$$

Coefficient

$$
(-4)+2 x
$$

$$
\left(-7 y^{2}\right.
$$

$$
2 \beta a b-12
$$

Term

$$
-\underbrace{-5 x^{2}}+\underbrace{-2 x})
$$

2 terms
$23 a b$
1 term

Constant

$$
\begin{gathered}
4 x-12 \\
7-2 y+x-6 x^{2} \\
3(x+3.9)-89
\end{gathered}
$$

Inequality

$$
y<4
$$

Like Terms

$$
\begin{aligned}
& 4 x-3 y+6 x-7 \\
& 2 y^{2}-3 y+7 y^{2} \\
& -5 r^{2}-6+2 r+2
\end{aligned}
$$

Relations

$$
\{(2,3),(4,1),(2,5)\}
$$

x	y
2	2
-3	4
5	-1
0	4
1	-6

$$
\{(0,4),(0,3),(0,2),(0,1)\}
$$

Functions

$$
\{(2,4),(3,2),(0,2),(-1,2)\}
$$

Table of Values

x	y
0	1
1	2
2	5
3	10
4	17

\boldsymbol{a}	1	2	3	4
\boldsymbol{b}	22,500	22,000	21,500	21,000

Domain

$$
\{(-2,0),(-1,1),(0,2),(1,3)\}
$$

$$
\{\text { ? }
$$

Range

$$
\{(-2,0),(-1,1),(0,2),(1,3)\}
$$

$$
\{0,1,2,3\}
$$

Dependent/

Independent Variable

Determine the distance a car will travel going 55 mph .

$$
d=55 h
$$

Independent Variable

$$
y=2 x+7
$$

x represents the independent variable (input values or domain)

Dependent Variable

(1) $=2 x+7$

y represents the dependent variable (output values or range)

Connecting Representations

The total distance Sam walks depends on how long he walks. If he walks at 2.1 mph , show multiple representations of the relationship.

t	d
0	0
1	2.1
2	4.2
4	8.4

$$
d=2.1 t
$$

Multistep Equations

$$
23(n+9)=-56 n
$$

$$
25=6 p-5-4
$$

Multistep Equation

$3 x+5=-3-x$

Unit Rate as Slope

A student walks 2 miles per hour
$\frac{2 \text { miles }}{1 \text { hour }}$
miles

hours

